China Standard Stub Axle Unbraked Agricultural Trailer SA-0035 drive axle

Product Description

Product: Stub axle unbraked agricultural trailer SA-0035
 

Product Parameters
Reference square Studs (qty/Ø) PCD Bearings Axle load Max.Overhang Technical data
A B 25-30km/h 40km/h 60km/h L L’ C E F
mm mm mm 1 Axle 2 Axles 1 Axle 2 Axles 1 Axle 2 Axles mm mm mm mm
354F 35 4/14 x 1,5 85 130 35714-35716 1000 900 200 164 56 35
404F 40 4/14 x 1,5 85 130 35715-35717 1500 1350 200 164 64 42
405F 40 5/16 x 1,5 94 140 35715-35717 1500 1350 200 173 64 52
404A 40 4/14 x 1,5 85 130 35715-35717 1500 1200 1350 1125 200 164 65 45
454A 45 4/14 x 1,5 85 130 35715-35718 2000 1650 1800 1500 1500 1400 210 165 79 37
455A 45 5/16 x 1,5 94 140 35715-35718 2000 1650 1800 1550 1500 1400 210 169 79 37
504F 50 4/14 x 1,5 85 130 35715-35719 3000 2700 180 172 65 52
505F 50 5/16 x 1,5 94 140 35715-35719 3000 2700 180 172 65 52
505A 50 5/16 x 1,5 94 140 35716-35719 3000 2500 2700 2250 2250 2100 180 168 86 47
506A 50 6/18 x 1,5 160 205 35716-35719 3000 2500 2700 2250 2250 2100 180 240 83 52
606XR 60 6/18 x 1,5 160 205 35718-35711 5000 4150 4500 4000 3750 3500 190 290 240 91 52
706X 70 6/18 x 1,5 160 205 35719-35713 6500 5400 5850 4900 4875 4550 230 330 260 115 37
806X 80 6/18 x 1,5 160 205 32211-35715 9100 7900 8200 7500 7500 6800 250 350 255 132 52
808X 80 8/18 x 1,5 220 275 32211-35715 9100 7900 8200 7500 7500 6800 250 350 324 132 55
906X 90 6/18 x 1,5 160 205 32211-32017 10000 8650 9000 8200 8200 7500 310 410 255 132 55
908X 90 8/18 x 1,5 220 275 32211-32017 10000 8650 9000 8200 8200 7500 310 410 324 132 55
908XR 90 8/18 x 1,5 220 275 32217-32217 11200 9750 15710 9200 9200 8400 290 390 325 131 74
910XR 90 10/22 x 1,5 280 335 32217-32217 11200 9750 15710 9200 9200 8400 290 390 380 131 74
1008X 100 8/18 x 1,5 220 275 32217-32217 13400 11600 12000 11000 11000 10000 320 420 325 131 74
1571X 100 10/22 x 1,5 280 335 32217-32217 13400 11600 12000 11000 11000 10000 320 420 380 131 74
1571XR 100 10/22 x 1,5 280 335 32219-32219 14500 12600 13000 11800 11800 10800 300 400 380 147 88
1110X 110 10/22 x 1,5 280 335 32219-32219 14500 12600 13000 11800 11800 10800 400 500 380 147 88
1210X 120 10/22 x 1,5 280 335 32219-32219 15000 13000 13500 13000 13000 11250 490 590 380 147 88
1510X (1) 150 10/22 x 1,5 280 335 32219-32219 15000 13000 13500 13000 13000 11250 500 600 380 147 88

FAQ:

Q. Are you manufacturer? What is the aim of your company?

A. Yes. CZPT Asia has been producing agricultural and industrial axles and suspensions since the year 2006. Our aim is to  
     provide only high quality Axles and Suspensions with accesories to global clients but with competitive prices.

Q. Where is your factory?

A. We are located in HangZhou, ZheJiang , China. Welcome to visit us.

Q. How many years have you been in this business line?

A. We have 20 years experience for production of Agricultural and Industrial products, Our products are enjoying good reputation
     from more than 20 countries.

Q. What is your brand?

A. ROC is our own brand, CZPT Asia is affiliated to the France CZPT Group (Est. 1971), it is a whole-owned subsidiary
    company of France CZPT Group in China. 

Q. Can you accept OEM ?

A. Yes, OEM is acceptable, We can sell products without ROC logo.

Q. How do you ensure the quality?

A. We have strict QC process:
1) Before production, Check strictly the raw material quality.
2) During the half production, We check the finished product quality.
3) Before shipment, We test every product and check defects. Any products with defects won’t be loaded.
More details, Please check with our sales team.

Q. What about your M.O.Q ?

A. Our minimum order value is USD500. For smaller order, please check particularly with our sales team.

Q. What is the lead time?

A. Within 40 days for 40ft container.  Within 30 days for 20ft container. 

Q. What about your payment terms?

A. We accept various terms, including T/T , L/C , Western Union, etc. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Yes
Condition: New
Axle Number: According to Requiremts
Application: Trailer
Certification: ASTM, CE, DIN, ISO
Material: Steel
Samples:
US$ 30/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

axle

What is the role of axles in electric vehicles, and how do they differ from traditional axles?

Electric vehicles (EVs) have unique requirements when it comes to their drivetrain systems, including the axles. The role of axles in EVs is similar to traditional vehicles, but there are some key differences. Here’s a detailed explanation of the role of axles in electric vehicles and how they differ from traditional axles:

Role of Axles in Electric Vehicles:

The primary role of axles in electric vehicles is to transmit torque from the electric motor(s) to the wheels, enabling vehicle propulsion. The axles connect the motor(s) to the wheels and provide support for the weight of the vehicle. Axles are responsible for transferring the rotational force generated by the electric motor(s) to the wheels, allowing the vehicle to move forward or backward.

In electric vehicles, the axles are an integral part of the drivetrain system, which typically includes an electric motor(s), power electronics, and a battery pack. The axles play a crucial role in ensuring efficient power transfer and delivering the desired performance and handling characteristics of the vehicle.

Differences from Traditional Axles:

While the fundamental role of axles in electric vehicles is the same as in traditional vehicles, there are some notable differences due to the unique characteristics of electric propulsion systems:

1. Integration with Electric Motors: In electric vehicles, the axles are often integrated with the electric motors. This means that the motor(s) and axle assembly are combined into a single unit, commonly referred to as an “electric axle” or “e-axle.” This integration helps reduce the overall size and weight of the drivetrain system and simplifies installation in the vehicle.

2. High Torque Requirements: Electric motors generate high amounts of torque from the moment they start, providing instant acceleration. As a result, axles in electric vehicles need to handle higher torque loads compared to traditional axles. They are designed to withstand the torque output of the electric motor(s) and efficiently transmit it to the wheels.

3. Regenerative Braking: Electric vehicles often utilize regenerative braking, which converts the vehicle’s kinetic energy into electrical energy and stores it in the battery. The axles in electric vehicles may incorporate systems or components that enable regenerative braking, such as sensors, controllers, and electric brake actuators.

4. Space Optimization: Electric vehicles often have different packaging requirements compared to traditional internal combustion engine vehicles. The axles in electric vehicles are designed to accommodate the space constraints and specific layout of the vehicle, considering the placement of the battery pack, electric motor(s), and other components.

5. Weight Considerations: Electric vehicles strive to optimize weight distribution to enhance efficiency and handling. Axles in electric vehicles may be designed with lightweight materials or innovative construction techniques to minimize weight while maintaining structural integrity and durability.

It’s important to note that the specific design and characteristics of axles in electric vehicles can vary depending on the vehicle manufacturer, drivetrain configuration (e.g., front-wheel drive, rear-wheel drive, all-wheel drive), and other factors. Automotive manufacturers and suppliers continually innovate and develop new axle technologies to meet the evolving demands of electric vehicle propulsion systems.

axle

How do axle ratios impact the performance and fuel efficiency of a vehicle?

The axle ratio of a vehicle plays a crucial role in determining its performance characteristics and fuel efficiency. Here’s a detailed explanation of how axle ratios impact these aspects:

Performance:

The axle ratio refers to the ratio of the number of rotations the driveshaft makes to the number of rotations the axle makes. A lower axle ratio, such as 3.23:1, means the driveshaft rotates 3.23 times for every rotation of the axle, while a higher ratio, like 4.10:1, indicates more driveshaft rotations per axle rotation.

A lower axle ratio, also known as a numerically higher ratio, provides better low-end torque and acceleration. This is because the engine’s power is multiplied as it goes through the gears, resulting in quicker acceleration from a standstill or at lower speeds. Vehicles with lower axle ratios are commonly found in trucks and performance-oriented vehicles where quick acceleration and towing capacity are desired.

On the other hand, a higher axle ratio, or numerically lower ratio, sacrifices some of the low-end torque for higher top-end speed and fuel efficiency. Vehicles with higher axle ratios are typically used in highway driving scenarios where maintaining higher speeds and maximizing fuel efficiency are prioritized.

Fuel Efficiency:

The axle ratio directly affects the engine’s RPM (revolutions per minute) at a given vehicle speed. A lower axle ratio keeps the engine running at higher RPMs, which may result in increased fuel consumption. However, this ratio can provide better towing capabilities and improved off-the-line acceleration.

In contrast, a higher axle ratio allows the engine to operate at lower RPMs during cruising speeds. This can lead to improved fuel efficiency because the engine doesn’t have to work as hard to maintain the desired speed. It’s worth noting that other factors, such as engine efficiency, aerodynamics, and vehicle weight, also influence fuel efficiency.

Manufacturers carefully select the axle ratio based on the vehicle’s intended purpose and desired performance characteristics. Some vehicles may offer multiple axle ratio options to cater to different driving preferences and requirements.

It’s important to consider that changing the axle ratio can have implications on the overall drivetrain system. Modifying the axle ratio can affect the vehicle’s speedometer accuracy, transmission shifting points, and may require recalibration of the engine control unit (ECU) to maintain optimal performance.

As always, for precise information on a specific vehicle’s axle ratio and its impact on performance and fuel efficiency, it is best to consult the vehicle manufacturer’s specifications or consult with automotive experts.

axle

What are the factors to consider when choosing an axle for a custom-built vehicle?

Choosing the right axle for a custom-built vehicle is crucial for ensuring optimal performance, durability, and safety. Here are several key factors to consider when selecting an axle for a custom-built vehicle:

  1. Vehicle Type and Intended Use:
  2. Consider the type of vehicle you are building and its intended use. Factors such as vehicle weight, power output, terrain (on-road or off-road), towing capacity, and payload requirements will influence the axle selection. Off-road vehicles may require axles with higher strength and durability, while performance-oriented vehicles may benefit from axles that can handle increased power and torque.

  3. Axle Type:
  4. Choose the appropriate axle type based on your vehicle’s drivetrain configuration. Common axle types include solid axles (live axles) and independent axles. Solid axles are often used in heavy-duty applications and off-road vehicles due to their robustness and ability to handle high loads. Independent axles offer improved ride quality and handling characteristics but may have lower load-carrying capacities.

  5. Weight Capacity:
  6. Determine the required weight capacity of the axle based on the vehicle’s weight and intended payload. It’s crucial to select an axle that can handle the anticipated loads without exceeding its weight rating. Consider factors such as cargo, passengers, and accessories that may contribute to the overall weight.

  7. Axle Ratio:
  8. Choose an axle ratio that matches your vehicle’s powertrain and desired performance characteristics. The axle ratio affects the torque multiplication between the engine and wheels, influencing acceleration, towing capability, and fuel efficiency. Higher axle ratios provide more torque multiplication for improved low-end power but may sacrifice top-end speed.

  9. Braking System Compatibility:
  10. Ensure that the chosen axle is compatible with your vehicle’s braking system. Consider factors such as the axle’s mounting provisions for brake calipers, rotor size compatibility, and the need for an anti-lock braking system (ABS) if required.

  11. Suspension Compatibility:
  12. Consider the compatibility of the chosen axle with your vehicle’s suspension system. Factors such as axle mounting points, suspension geometry, and overall ride height should be taken into account. Ensure that the axle can be properly integrated with your chosen suspension components and that it provides sufficient ground clearance for your specific application.

  13. Aftermarket Support:
  14. Consider the availability of aftermarket support for the chosen axle. This includes access to replacement parts, upgrade options, and technical expertise. A robust aftermarket support network can be beneficial for future maintenance, repairs, and customization needs.

  15. Budget:
  16. Set a realistic budget for the axle selection, keeping in mind that high-performance or specialized axles may come at a higher cost. Balance your requirements with your budget to find the best axle option that meets your needs without exceeding your financial limitations.

When choosing an axle for a custom-built vehicle, it’s recommended to consult with knowledgeable professionals, experienced builders, or reputable axle manufacturers. They can provide valuable guidance, assist in understanding technical specifications, and help you select the most suitable axle for your specific custom vehicle project.

China Standard Stub Axle Unbraked Agricultural Trailer SA-0035   drive axleChina Standard Stub Axle Unbraked Agricultural Trailer SA-0035   drive axle
editor by CX 2024-04-30